24 research outputs found

    Adaptive Asynchronous Control Using Meta-learned Neural Ordinary Differential Equations

    Full text link
    Model-based Reinforcement Learning and Control have demonstrated great potential in various sequential decision making problem domains, including in robotics settings. However, real-world robotics systems often present challenges that limit the applicability of those methods. In particular, we note two problems that jointly happen in many industrial systems: 1) Irregular/asynchronous observations and actions and 2) Dramatic changes in environment dynamics from an episode to another (e.g. varying payload inertial properties). We propose a general framework that overcomes those difficulties by meta-learning adaptive dynamics models for continuous-time prediction and control. The proposed approach is task-agnostic and can be adapted to new tasks in a straight-forward manner. We present evaluations in two different robot simulations and on a real industrial robot.Comment: 16 double column pages, 14 figures, 3 table

    Behavioral Repertoire via Generative Adversarial Policy Networks

    Get PDF
    Learning algorithms are enabling robots to solve increasingly challenging real-world tasks. These approaches often rely on demonstrations and reproduce the behavior shown. Unexpected changes in the environment may require using different behaviors to achieve the same effect, for instance to reach and grasp an object in changing clutter. An emerging paradigm addressing this robustness issue is to learn a diverse set of successful behaviors for a given task, from which a robot can select the most suitable policy when faced with a new environment. In this paper, we explore a novel realization of this vision by learning a generative model over policies. Rather than learning a single policy, or a small fixed repertoire, our generative model for policies compactly encodes an unbounded number of policies and allows novel controller variants to be sampled. Leveraging our generative policy network, a robot can sample novel behaviors until it finds one that works for a new environment. We demonstrate this idea with an application of robust ball-throwing in the presence of obstacles. We show that this approach achieves a greater diversity of behaviors than an existing evolutionary approach, while maintaining good efficacy of sampled behaviors, allowing a Baxter robot to hit targets more often when ball throwing in the presence of obstacles.Comment: In Proceedings of 2019 Joint IEEE 9th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), pages 320 - 32

    Discovering Representations for Black-box Optimization

    Full text link
    The encoding of solutions in black-box optimization is a delicate, handcrafted balance between expressiveness and domain knowledge -- between exploring a wide variety of solutions, and ensuring that those solutions are useful. Our main insight is that this process can be automated by generating a dataset of high-performing solutions with a quality diversity algorithm (here, MAP-Elites), then learning a representation with a generative model (here, a Variational Autoencoder) from that dataset. Our second insight is that this representation can be used to scale quality diversity optimization to higher dimensions -- but only if we carefully mix solutions generated with the learned representation and those generated with traditional variation operators. We demonstrate these capabilities by learning an low-dimensional encoding for the inverse kinematics of a thousand joint planar arm. The results show that learned representations make it possible to solve high-dimensional problems with orders of magnitude fewer evaluations than the standard MAP-Elites, and that, once solved, the produced encoding can be used for rapid optimization of novel, but similar, tasks. The presented techniques not only scale up quality diversity algorithms to high dimensions, but show that black-box optimization encodings can be automatically learned, rather than hand designed.Comment: Presented at GECCO 2020 -- v2 (Previous title 'Automating Representation Discovery with MAP-Elites'

    DREAM Architecture: a Developmental Approach to Open-Ended Learning in Robotics

    Full text link
    Robots are still limited to controlled conditions, that the robot designer knows with enough details to endow the robot with the appropriate models or behaviors. Learning algorithms add some flexibility with the ability to discover the appropriate behavior given either some demonstrations or a reward to guide its exploration with a reinforcement learning algorithm. Reinforcement learning algorithms rely on the definition of state and action spaces that define reachable behaviors. Their adaptation capability critically depends on the representations of these spaces: small and discrete spaces result in fast learning while large and continuous spaces are challenging and either require a long training period or prevent the robot from converging to an appropriate behavior. Beside the operational cycle of policy execution and the learning cycle, which works at a slower time scale to acquire new policies, we introduce the redescription cycle, a third cycle working at an even slower time scale to generate or adapt the required representations to the robot, its environment and the task. We introduce the challenges raised by this cycle and we present DREAM (Deferred Restructuring of Experience in Autonomous Machines), a developmental cognitive architecture to bootstrap this redescription process stage by stage, build new state representations with appropriate motivations, and transfer the acquired knowledge across domains or tasks or even across robots. We describe results obtained so far with this approach and end up with a discussion of the questions it raises in Neuroscience
    corecore